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ABSTRACT
_~ This paper contains an existence theorem for a special class of periodic

solutions of Hamiltonian systems and generalizes an earlier result of the same

nature due to Weinstein. -~ T YRR
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/ SIGNIFICANCE AND EXPLANATION

"/ Welnstein studied a general class of mechanical systems and established
the existence of special kinds of periodic solutions which he called brake
orbits. Roughly speaking these solutions start at the boundary of a potential
well with 0 velocity and return to the edge of the well, again with 0

velocity, a half period later. This paper contains a generalization of his

results using minimax methods from the calculus of variations as the existence

tool. .
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ON A THEOREM OF WEINSTEIN
Paul H. Rabinowitz
§1. 1Introduction
In a study of periodic solutions of Hamiltonian systems, Weinstein {1] considered

Hamiltonians of the form H{p,q) = K(p,q) + V{g). Here the potential energy V satisfies

(vy) D= {qeR®|V(q)<1} is diffeomorphic to B,

the closed unit ball in P", and Vq(q) ¥ 0 on 3D

.

DN AL

while the kinetic energy satisfies

(K1) K{0,q) = 0, X is even and strictly convex in p for fixed q, and

. K{ap,q) + = as ]al + » uniformly for p « S"'1 and q ¢ D.
k Solutions of the corresponding Hamiltonian system:
{HS) B=-u,lpa) + §=Hylp,q)

v

for which there exiats a T > 0 and @4, Qy € 30 such that p(0) = 0 = p(T) and

.

qf0) = Q,, q(T) = Q, were called brake orbits by Weinstein. Due to the evenness of X

.
s

g in p, by extending g as an even function and p as an odd function about 0 and T,

Voot ey

. the resulting functions (P,Q) satisfy {HS) and are 2T periodic. Thus brake orbits are
special kinds of periodic solutions of (HS).

In {1] Weinstein proved:

Theorem 1.1: If K, V ¢ cz and satisfy (V,) and (K‘), then (HS) possesses a brake orbit
? on w-'(1).
. n
:. Theorem 1.1 generalizes an earlier result of Seifert (2] for K(p,q) = E ‘ij(q)pipj
> i,j=1
‘. with the matrix (‘1j(q” uniformly positive definite in 0. Motivated by [1]), it was
= proved in [3] that:
: g
A. \.' ’..
. [
. R
“e Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the National ;ﬂ:%'
Science Foundation under Grant No. MCS-8110556. Reproduction in whole or in part for any f :
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: Theorem 1.2: If K, V ¢ cz, V satisfies (V ), and K satisfies

i (X5} X{0,q) =0, p Kp(p.q) >0 if py¥ 0, and Klap,q) + » as

: |a] »+ » uniformly for p ¢ 8! and q € 2,

X .

: then (HB) possesses a periodic solution on gt

B

’ Theorem 1.2 drops the svenness assumption of Theorem 1.1 and replaces the convexity =
condition by the milder restriction that p « K, > 0 if p ¥ 0. The price paid for this '\‘::f:

\ added generality is that Theorem 1.2 asserts the existence of a periodic solution rather ;i;i

) than a brake orbit. A natural question to pose is whether (HS) possesses a brake orbit if Qﬁ??i

; in Theorem 1.2, K is also assumed to be even in p. Our main goal here is to resolve 3

g this question and show: ;%ﬁ%ﬂ

: R

N Theorem 1.3: If X, V «C2, V satisfies (V,), X satisfies (K,) and is even in p, then S:{:.

N {HS) possesses a brake orbit on H™'(1). ’ﬁtaa

) The exiatence approach taken in (3] was to reduce the solution of (HS) to that of 3 {:

. finding a critical point of a corresponding functional. This latter problem was solved by ii;ié

X a finite dimensional approximation argument together with appropriate estimates which ;}‘;L

. permitted passage to a limit. In finding a critical point of the finite dimensional ) u':

; problem, a key role was played by an s' symmetry which the functional possesses. In ??i;:'

\; trying to prove Theorem 1.3, a natural approach is to work in a class of functions in :g&iEA
wvhich p and q have the desired form. However by doing so, the functional losses the i

: g! symmetry and the corresponding existence wmechanism used in proving Theorem 1.2 breaks

; down. Thus the main difficulty here is to find a new approach to the existence question

which overcomes the loss of symmetry. This is provided by some minimax ideas used in a
recent paper (4]).

In §2, the variational problem which yields Theorem 1.3 will be formulated and the
finite dimensional approximation carried out. Aside from the new existence mechanism,
several of the steps and details here are quite close to those of [3]). Therefore we will

be sketchy at times and refer to (3] as appropriate.

S 2=
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§2. The proof of Theorem 1.3

In Theorem 2.1 of (3], a canonical transformation is made which converts the potential
well, D, given by (V4] to the closed unit ball 31- Obgerving that the trancformed

Hamiltonian gtill satisfies (Kz) with D replaced by B, and is even in p, Theorem 1.3

1

reduces to proving:

Theorem 2.1: Let H = K+V where XK, V ¢ c1 and satisfy

tVy*') {@eR | 0<¢V<I1}) =8B, V=1 and Vqla) # 0 on 3By,

(Kz') K{0,q) = 0, K is even in p, p - Kp(p,q) >0 if p ¥ 0, and

K(ap,q) + = as |a] + = uniformly for p « s™ ' ana q € By

Then {HS) possesses a brake orbit in .
set M= H '(1). Hypothesis (Vy") amd (K,*) imply M is a compact ¢? manifold in
2" which bounds a neighborhood of 0 in R2", Let z = (p.,q). Wwhen convenient we
write H(p,q) = H{z). A standard lemma - see e.g. {1] or [3] for H ¢ c? or (5] for the
¢! case - states that if H is a new Hamiltonian such that H -'(l) = M and i; ¥0
on M, any solution of
(2.2) £ = -iq(a,rn n = ﬁp(e.n)
on M is a reparametrization of a solution of (HS) on M. Thus if there is an H for
which {2.2) has a brake orbit on M, we easily get a brake orbit for (HS) on M. a
particular such H is constructed in [3] and will also be employed here. For the
convenience of the reader, we recall its construction.
By (V;'), there are constants §, n > 0 such that
Vgta) « q > aViq) > %
for |ql ¢ (1-24,1+28] and there is a constant u = u(é) > 0 such that if Vi{q) > 1~y
and |q| < 1+2¢, then |q| > 1-4. since K(D,q) = 0, there is a constant y4{§) such
that K(p,q) < u/2 if |p| < uy and lq] < 14286, since M 1is compact, there is a

constant M, > 0 such that M C BM1. Using (K,') it can further be assumed without loss

of generality that min(k(p,q), |p|%) > 1 1f |p| > M, and |q| < 1.

M
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Wow for &, D ¢ R and a <b, let yxi{sja,b) >1 4f s <a; =0 if s > b; and

<0 if s ¢ {a,D). Pour such cut-off functions will be used:

u
1
xp) = 1 = xtlplr 37wy

Xy () xtaqls 1-25, 1428y ,
Xy (q) xtiqls 1, 148 ,
x (P = xtiplr M+, mos2)

Now the new Hamiltonian H 4is defined via

Hip,q) = K(p.q) + V(p,q)
Vip.@) = x, (Pl laIViQ) + (1=xyladdxgt@IVi@) + o (1-x,(a)|ql?

K(p.@) = x (PIxXy(@IKipsa) + 0, (1-x, (e} pl? .

The constants py and p, 4are chosen large enough such that the following result holds:

Proposition 2.3: H possesses the following properties:

(H,) TN o= M,

(iz) If H is even in p, so is H,

(1'1'3) P ip(p.q) >0 for all p,q,

(i") q - iq(o.q) > 0 with strict inequality if |q| > 1-5 ,

(is) There are constants a,, a; > 0 such that H(z) > a1|z|2 - a, for all = ¢ SN
Proof: See Lemmas 2.14 and 2.17 of (3].

Above remarks justify proving Theorem 2.1 with H replaced by H. By making the
change of time scale ¢t +» wt‘l‘" H A"t where T is the unknown half period, T becomes
n and (2.2) can be replaced by

2.4) p = =AM 3~ \H_ .
( Pp=- q s q p

Thue we seek ) > 0, p odd about 0 and 7 and g even about 0 and = such that
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{p(t), qit)) lies on B-1(1) and satisfies (2.4). As in (3], it is convenient to make
one further technical modification of (2.4). For ¢ > 0, set
i;(z) = H{z) + elpl2 .

Then

= 2
{2.5) P H_(2) > 2¢lpl® .

Our strategy is to find a solution of the desired type for

{2.6) AU ST

A

2
L)

v
L]

on i;'1(|). Then letting ¢ + 0 will produce a solution of (2.4). .*.¢f}

S
l Let }rfi‘
) 1,2,_.1 _2n )
. X = {z=(p,q) eW (s ,R ) | p is odd and q 1is even about ¢ and rn} . -

FPor £ ¢ X, set

o ¥(z) = %; f:“ ie(z)dt
! and

}

‘! Alz) = jg' pe+qat .

v w -

4 88 a

We will find a critical point of A on
Sz {zex | ¥z} = 1)

* and show that this provides a solution of (2.6} on HE‘(!)- Technical problems make it

Ul

4ifficult to treat AIS directly. Therefore a finite dimensional approximation argument

will be used.

Let ey,...,ey, denote the usual basis in R°® and set

‘R LY.

* span fe | n+1 ¢ k < 2n}

o e —- -
>
u

' a® 4t
>
3 +
[

z span (ojk = (sin jtle, - (cos jtle ] 1 ¢<x <n, 1 <3 <m)

‘L,
I

8
"

span (wjk = (sin jtle, + (cos jtle | 1<k <n, 1<3<m} .

It is easily checked that for fixed m, these subspaces of X are mutually orthogonal in

+ - -
L’(s'.n?“). Let X, = X, © X, ® X;. For z = zo + 2t + 2 € Xy, a computation shows

-5-
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Ats) = atzh) + AtzD)

l(l" > nl:ﬂz

1 p
(2.7 w225 22" 2

r

- -2 . o
Alz ) < =niz Ny P
w231, 22" .
W]
N 0%
where e.g. if £ ¢ Xy and z = T ajeoqys 1217 = L) 'gk‘ Let: 8, & 8 N Xy, F
.“-. <
Lemma 2.8: There is a constant 0y > 0 such that for each |o| < aps {2z € Xy | ¥(z) = 140} SN
(and in particular s,) is a compact c‘ manifold in X, which bounds a neighborhood -\}*:

of 0.

RIS A NCNPYEPASREL o o b oF o D e g g RS

Proof: This follows from (2.5), (B_‘), (is), and a slight modification of the proof of

Lemma 3.2 of [3).

If A and ¢ are extended to w"’(s',lz“), they are invariant under the set of

- translations gglz) = z{t+9) for 8 ¢ R, i.e. Alggz) = Afz), !(ga(z)) = y(z) for all

such 8 and z. This fact allows the use of an index theory for s1 actions which plays

a key role in proving Theorem 1.2. Unfortunately X is not invariant under {ge} and to ;.;-'_‘,
' make up for this loss of symmetry, & version of a minimax argument used in (4] will be * ‘ p
- \.'I.
employed. Towards this end, some comparison constants and sets must be introduced. TLet '_-_r:\ﬂ.“_
° -“-.\'u
N a_ = inf A(z) . S
-~ m + v .'..
- ZeS N X .
. m m

¥y = Xo © span {p} ® X
where ¢ = 949 and let
By = sup Afz) .
ZeW N S
mom

Lewwa 2.9: 0 < ay < By < =

Proof: By Lemma 2.8, for Ta sufficiently small, the ball B, in X, lies inside
_ n




R, FL Y o AR+ Y

Sye Hence {2.7) shows

a > inf >0 .
zeBr Nnx

2
hzh
+ 2"1/2,2
.}
Since S, is compact, B, < = Finally since W, N x; = gpan{g¢},
a < inf A < Bm .
span{p}nN Sm

Now let
z {h e ClXg,Xy) | h satisfies (hy) - (hy)}
where

1

(h,)_ h=41a 1€ {¥(z) - 1| >3 or if Atz) ¢ (0,8y*1]
(hz) h: 8 + S

(h3’ h is 1-1.
Clearly T, ¥ ¢ since id € Ty
A critical value of A]s can now be defined. Let
m

(2.10) Cp = inf max A{n(z)) .
hel  zeW N S
m m m

Since id ¢ Ty, ¢y € By < =« To prove that c, 1is indeed a critical value of Als , two
m

preliminary results are needed. The first is a crucial intersection theorem.

pProposition 2.11: If h ¢ Ty, hiWy NSy N x; # ¢

Proof: Let h < l,. WNote that A < 0 on xo ® x; and therefore by (h1), h = id on

this set. By (ES),

, 2
(2.12) ¥iz) > aananz a,

so ¥{z) » » as 2z » = Hence by (2.12), there is an Ry > 1 such that for 2z outside

the 12 ball B, 4in X_, ylz) > 1. Therefore by (hy) h = id on this set. Let
Rm m 1

= 0 -
Qm:aRmr\(x ® (ro [ r>0}0x) .

We will find 25 ¢ Qo O Sy such that

(2.13) nlzg) « Xy

~7-

[

.
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AR AT LR |
Al b A B o o




thereby establishing the Proposition. Let Po, P;, P; denote respectively the (Lz)

orthogonal projectors of X, onto Xo, x;, X,. Satisfying (2.13) for z, ¢ S, is

m
equivalent to
(1) W(z‘) -1

(2.14) -
(i) (Po + Pn)h(zm) = 0.

If £ € Qp Z = ytre = (y,r) where y ¢ x0 o X5 Let

dy,r) = ((Py + Pglh(y+re), ¥iy+re)) .
ldentifying W, with g{MB L o ana Qn with a subset thereof,
. n(n+‘l)n

®: 6—

" x R. Consider the Brouwer degree of ¢ with respect to the bounded open

set Q. and the point (0,1). This degree will be denoted by d(0,Qm.(0,1)). It is
defined provided that & ¢ {0,1) on 3Q,. But if (y,r) ¢ 3Q,, either r = 0 in which
case A(y) < 0, hiy) =y, and #(y,0) = (y,¥(y)) ¥ (0,1), or iy+rel 2 = Ry so that
h{y+rgp) = y+rp by the choice of R, and &(y,r) = (y,¥{y+re)) with Lv(y+r¢) > 1. Thus
4(9,04,0) is defined.

We claim & is homotopic to the identity map on BQm, the homotopy avoiding (0,1).
Then
(2.15) a(8,Qpn,(0,1)) = 4(i4,0p,(0,1)) = 1
since Ry > 1 and therefore (0,1) ¢ Q,- To verify the claim, obgerve that the argument
showing that d(¢,Q,,(0,1)) is defined fmplies &(y,r) = (y,¥({y+rg)) for (y,r) ¢ 3Qny.
Thus we only need construct an appropriate homotopy of VY{y+rg) to r on Qp: For
8 ¢ [0,1], let

dgly,x) = (y, 0 Y(y+rg) + (1-8)r) .

1f Oe(y,r) = (0,1) on QQM, then y = 0. Therefore r =0 or r = Ry« But if r = 0,
®y(0,0) = (0,0) # (0,1) while 4f r = Ry, $3(0,Ry} = (0,8¥(Ry o) + (1-8)Ry) # (0,1) since
¥(Ry ), Ry > 1. Thus (2.15) holds and by the properties of Brouwer degree, there exists

a z, <« Q, satisfying {2.14). Finally since hizp) « Spy  (hy) - (hy) imply =z, « Sp and

the proposition is proved.

J ——— ——— - - - - - -
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Corollary 2.16: cp > ay.

Proof: If h ¢ Iy, by Proposition 2.11,

}QE§§
{2.17) max Af{h(z)) »> inf+ Al(w) = % rﬁix ,
Gt

zeW N S weX < L

ALy

Since (2.17) holds for all h ¢ I, cp > ap. 5%32

Next a version of a standard Deformation Theorem is required.

Proposition 2.18: 1If o is not a critical value of A| there is an r > 0 and

Sm’
ne C{(0,1] x xm,xm) guch that

1°. n{s,«} is a homeomorphism of X, onto X, for each s ¢ [0,1],

1
2°. nt1,2) =z if Alz) ¢ [0,8,*1) or if |¥(z)-1| >,
3°, n(s,s) : S, » S, for each s ¢ [8,1],

n

4%, vLetting A, » {x € Sy | Alx) < o},

AN
“(1IACm+r) C Acm_r- :::-..:.-
m
Proof: This result is essentially in the literture - see e.g. (6 - 8] - 30 we will be k:ﬂ;u
rather sketchy. Suppose first that H o« Cz. Then n is determined as the solution of an RN
s
ordinary differential equation in X, of the form: k;;‘;
R
dn A
3s = ~wim [A'(n) = XY ()] e
(2.19) A
n{0,z) = 2 ;-.::\_::.

where

1] [ u v -2

A{n) = A'(n) « v (niny'(n)n . -
In (2.19), w 18 a locally Lipschitz continuous function satisfying 0 < w(s) < 1, w(.) = 0 '-jf‘%
outside of a small neighborhood of S, wl+) = 0 4if A{z) ¢ (0,8 +1), and u is such B

that the right hand side of {2.19) is < 1 in norm. 1In the construction of w, use is
made of the fact that «cp ¢ [a,,8,] with on > 0 as has been verified above. Now since

¥' # 0 near Sy (via the proof of Lemma 3.3 of (3]), the right hand side of (2.19) is ;:'-f

well defined and locally Lipschitz continuous. Therefore 1° - 3° of Proposition 2.18

-9-
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follow immediately from our above remarks. Finally 4° is a consequence of a standard
argument [7 - 8].

If H is merely c‘, vin) = A'{n) ~ A(n)¥'{n) must be replaced by a corresponding
pseudo-gradient vector field for V on a neighborhood of 8, which is tangential to
Sp* Then the result follows essentially as in the C2 case. See [7 - 8).

These preliminaries now yield

Proposition 2.20: ¢, 1is a critical value of Alg .
m

Proof: If not, let r and n be as given by Proposition 2.18. Choose h ¢ I, such that

(2.21) max Ath{z)) < € +r
z2eS N W
m o m

By (2.21) and 3° - 4° of Proposition 2.18,

{2.22) max A{n{1,h(z))) < c,-r o
zcsmn wm

But 1° - 3° of Proposition 2.18 imply n(1,h) ¢ I,. Thus (2.22) contradicts (2.10).

Remark 2.23: If z, is a critical point of Als corresponding to ¢, then Am = A(zm)
- n

is positive. 1Indeed since

(2.24) (A'{zg) = X ¥'{zy))g =0

for all ¢ « X,, choosing [ = (py,0) where zy = (py,q,) shows
2w . 2n =

(2.25) “n * fo Py * 9y 9t = A, IO Py * Hep“n)dt .

Since cgu > 0, (2.5) and (2.25) imply X, > O.

The idea now is to let m + » and show that ()\,,Z,) converge along a subsequence

to (A,z) satisfying {2.6). Some estimates are required to carry this out.

Proposition 2.26: There are constants 0 < ¢ < € ¢ = such that

(2.27) cécy ¢
for all m < N.
Rgsuming Proposition 2.26 for now, the proof of Lemma 3.22 of (3) - slightly modified

since cg, xm > 0 here while Cre Am € 0 4in [3) - shows there are constants

.
.
o
.
'

-10~
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0 ¢y« ; ¢ » and independent of m such that
{2.28) Y < xm <y

for all m ¢ W. Moreover Lemma 3.32 of [3] then proves the sequence (z is tounded in

»)
w1'2(s1,l2“). Hence, along a subsequence, )\, converges to A>0 and gz  converges
weakly in w'r2(s!,®") and strongly in c(s!,B®") to z ¢ w'v2(s!,m®") satistying
(2.29) tatl{z) -~ » y'"(z2))g =0

for all r ¢ X. Setting g = {u,v), equation (2.29) is equivalent to

P'p « 9+ (Gow - A[(E;piz) cu) + (i;q(z) . v)llae

= [{{{-p ~ IR v) + (q - Aﬂep(z)) eu)ldat = 0

for all (u,v) ¢ X. Since p and q are continuous, (Hp(p,q), Bq(p,q)) € ¥, the
closure of X in Lz(s1,l?“). It then follows from (2.30) that z = (p,q) satisfies
(2.6) and 2z ¢ c‘(s’,lzn). Since (2.6) is a Hamiltonian system, i;(s) = constant. Hence

z ¢ 8 implies z 1lies on a~tin).

Proof of Proposition 2.26: By a remark following (2.10) and Corollary 2.16, ay € cp € Bpe

If o, +0 as m » = along some subsequence, there is a corresponding sequence (w,} such
that wy ¢ x; NS, and Alwy) + 0. Therefore by (2.7), wy + 0 in wlr2(s!,8%") and a
fortiort in L2(51,l2“). Since ﬁe(z) grows at a quadratic rate for large g, ¥ 1is

continuous on L2(31,I?n)

and
A 2n
Yw ) » o= [o B {0)at =0 .
But v(wm) =1 for all m so qa, must be bounded away from O and there is a positive
£ as desired.

Next to show that (B,) is bounded away from infinity, recall that

B = sup Afz)
zZeW N 8
m m

Let W = X7 @ span{g)} ® X°. Since W, CW and Su C Sy

Sm < sup Afz) = c .
zeW N 8§

Thus it suffices to prove that C<w But if z W, z =20 + plz)e + =z~ and

~11-
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(2.27) Al2) = p“(z)Ale) + Alz7) < v p°(2) . N ',
By (is). 1f 2 cWANS, F
. .
1 2 2 bt - I
) > 1> o= [0 (A‘Izl - a))at = o lzlL2 a, . 3
Y,
2 AN
%!
>, plz) a, M,
¥
or {-.__-.
1+a R
(2.28) otz)? ¢« —2 O
a LI
1 .
Combining (2.27) and (2.28) ylelds e,
1+a -
- 2
c<r
%

and the proof is complete.

Remark 2.29: As examination of the above argument shows that ¢, S can be chosen

independently of ¢. Therefores ¢ < c. = Alz. ) < c where z. 1is a solution of (2.6) ,».:'_\
LSS

o
obtained via the finite dimmensional approximation argument. .'-',‘_.'r:
el

“'-":
R
Completion of the proof of Theorem 2.1: We must show (2.4) has a solution of the desired A
g
type. Such solutions (xe,z:) have already been obtained for (2.6). It suffices to prove - &

that {3 } 4is bounded away from 0 and = in R and {z_} is bounded in w"2(s1,12“)
for then we can easily pass to a limit to find a solution of (2.4) on gt (1). But the
€ independent bounds for ce of Remark 2.29 and Lemma 3.35 of (3] yield the necessary

bounds for (1.}, {z.}.

Remark 2.30: Gluck and Ziller [9] have proved there are brake orbits for (HS) under more
general conditions on V than (V4). (See also Hayashi [10] and Benci [11] for a special
case.) We suspect that Theorem 1.3 holds in their generality with respect to V. The

difficulty in proving such a result via the approach given here is to find bounds for the

periods of approximate solutions.

-12-
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The existence of a special kind of brake orbit which passes through the

Remark 2.31:

8
>
o
]
£
v
.~
)
]
e
o
-l
-]
[+]
»
-
-
[-]
<
=
-
o
-
-]
o
-
O
E-]
2
]
L
7]
(o]
(Y]
~
2]
=
Y]
]
-
-
o
-
2
]
b
Y]
>
-4
O
-t
-
4
-
o
.m
]
o
-
-
[ 4
>
]
<
]
-
4
P
]
o

considered here was proved by van Groesen (12].
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